Short Communications and Preliminary Notes

Cytochrome c3, a bifunctional haematohaematin

The cytochrome of the anaerobic sulphate-reducing bacteria^{1,2} will be termed cytochrome c_3 , since its systematic name— $Desulphovibrio\ desulphuricans$ cytochrome 553—is cumbersome. The protein has been extracted and purified by a procedure, to be described in detail elsewhere, involving acid-precipitation from extracts of acetone-dried cells followed by chromatography on cellulose and Amberlite IRC 50. Evidence for carrier activity in the reduction of sulphate and related ions has been reported³.

The product was a deep red autoxidizable water-soluble powder, homogeneous in the ultracentrifuge and by paper electrophoresis, containing less than 5% of impurity absorbing at 280 m μ when chromatographed on IRC 50 columns as described by Boardman and Partridge⁴. The following properties have been examined:

(i) Iso-electric point: paper electrophoresis in phosphate buffers with pure cytochrome c as control indicated an iso-electric point between pH 10.3 and 10.6.

(ii) Redox potential: potentiometric titration with sodium dithionite in the presence of anthracene-2-sulphonic acid as a poising agent gave a value of $E'_0 = -205 \pm 4$ mV at 30°.

(iii) Spectrum: the oxidized material had peaks at $\alpha = 535$, $\gamma = 410$, $\sigma = 350$ m μ , with an inflection at ~ 568 m μ . The reduced material had peaks at $\alpha = 553.4$, $\beta = 525.0$, $\gamma = 419$ m μ ; the further ultra-violet region of the reduced form was not investigated, since, owing to the low E'_0 of c_3 , only dithionite is a suitable reducing agent and this is opaque below ~ 380 m μ .

(iv) Specific extinction coefficient: the pure reduced material had an ε_{sp} of 4.2 at its α -peak. This is roughly twice that of cytochrome c, and indicates that c_3 has either half the molecular weight of c, or twice as many haemine groups per molecule. In the latter case a molecular weight of $\sim 12,500$ would be expected.

(v) Sedimentation coefficient: a test in the ultra-centrifuge carried out by Dr. A. G. OGSTON at Oxford indicated a value $S_{20,w}=1.93\cdot 10^{-13}$. This indicates a minimum molecular weight of

10,200, consistent with a double-haemin molecule similar in size to that of cytochrome c. (vi) Iron content: 8.1 mg cytochrome c_3 was wet-ashed and analysed for iron by the ophenanthroline procedure. It contained 0.92% Fe, roughly twice that of pure cytochrome c,

again consistent with a double-haemin structure.

(vii) Chemical stability: cytochrome c_3 was stable to boiling for five minutes, and no haemin was released with mineral acid—or acetic-acetone. Ether-insoluble porphyrin was released from the reduced form by HCl (3.3 N); its α -band lay at 554 m μ (cf: 553 m μ for "porphyrin c"). Hence the pigment probably has thio-ether links between the protein and haemin similar to those of cytochrome c.

(viii) Prosthetic group: treatment with silver sulphate and acetic acid⁵ yielded a haemin (Soret peak 390 m μ in KH₂PO₄, pH 7; cf: 391 m μ for a control preparation of haematohaemin from cytochrome c) which after extraction formed a pyridine haemochrome spectroscopically similar to pyridine haematohaemochrome (408, 517.2, 546.0 m μ). Reductive fission of c_3 with Na/Hg⁶ yielded a porphyrin having the spectrum of mesoporphyrin and a chlorin, both products being spectroscopically like those derived from cytochrome c.

These studies lead to the conclusion that cytochrome c_3 is a bifunctional haematohaematin with thio-ether haemin-protein links. They will be reported in detail elsewhere.

This note is published by permission of the Director, Chemical Research Laboratory.

JOHN POSTGATE

```
Chemical Research Laboratory, Teddington, Middlesex (England)
```

¹ J. R. Postgate, Biochem. J., 56 (1954) xi; 58 (1954) ix.

² M. Ishimoto, J. Koyama and Y. Nagai, *Biochem. J. (Tokyo)*, 41 (1955) 763.

³ J. R. Postgate, Proc. 3rd. Intern. Congr. Biochem., (1955) 94.

⁴ N. K. Boardman and S. M. Partridge, Biochem. J., 59 (1955) 543.

⁵ K.-G. PAUL, Acta Chem. Scand., 4 (1950) 239.

⁶ H. E. DAVENPORT, Nature, 169 (1952) 75.